
 Accepted: 21-04-2022 | Received in revised: 07-06-2022 | Published: 30-06-2022

387

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 6 No. 3 (2022) 387 - 396 ISSN Media Electronic: 2580-0760

Implementation of CNN-MLP and CNN-LSTM for MitM Attack

Detection System

Hartina Hiromi Satyanegara1, Kalamullah Ramli2
1,2 Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia

1hartina.hiromi@ui.ac.id, 2kalamullah.ramli@ui.ac.id

Abstract

Man in the Middle (MitM) is one of the attack techniques conducted for eavesdropping on data transitions or conversations
between users in some systems secretly. It has a sizeable impact because it could make the attackers will do another attack,
such as website or system deface or phishing. Deep Learning could be able to predict various data well. Hence, in this study,
we would like to present the approach to detect MitM attacks and process its data, by implementing hybrid deep learning
methods. We used 2 (two) combinations of the Deep Learning methods, which are CNN-MLP and CNN-LSTM. We also used

various Feature Scaling methods before building the model and will determine the better hybrid deep learning methods for
detecting MitM attack, as well as the feature selection methods that could generate the highest accuracy. Kitsune Network
Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results prove that CNN-MLP has better results than
CNN-LSTM on average, which has the accuracy rate respectively at 99.74%, 99.67%, and 99.57%, and using Standard Scaler
has the highest accuracy (99.74%) among other scenarios.

Keywords: MitM, Kitsune Network Attack Dataset, CNN-MLP, CNN-LSTM

1. Introduction

Technology growth is more sophisticated and rapid in

this era, and it makes many people can get the desired

information easier and more efficient. But

unfortunately, some people misuse the technology itself

to get profit for them and loss for the victim at the same

time. The attacks could be occured on digital assets,

such as websites, email, social media, information

systems, etc.

MitM (Man in the Middle) attacks is one of the attacks

by accessing the target system, and usually, the

attackers are in between the data transmission or

conversations between 1 (one) user to another user or

server. Subsequently, they could conduct another

attack, such as phishing, by sending an email to the

victim to access the link from the attacker, as if it is from

an official company or institution [1].

It has a sizeable impact because it could create a way

for other attacks. Based on X-Force Threat Intelligence

Index 2022 created by the IBM Security team, it is
mentioned that Mozi botnet attacks that target IoT

(Internet of Things) and OT (Operational Technology),

the attackers can conduct MitM attacks by infecting

routers to spread ransomware to IoT and OT [2].

Usually, to prevent and minimalize the incoming

attacks on our system, we could be using NIDS

(Network-based Intrusion Detection System). NIDS is

1 (one) type of the IDS (Intrusion Detection System),

besides anomaly-based and signature-based, that

monitors the network traffic, and it can detect whether

the traffic is benign or malicious and suspicious for our

system [3]. Besides that, NIDS could detect the network

traffic by comparing the pattern or signature of the

database. NIDS is also referred to as packet-sniffer [4].

Deep Learning (DL) is a subset of Machine Learning

(ML), where deep learning is an important part of

Artificial Intelligence (AI) [5]. Deep learning can

process the data from any discipline, gives decision-

making, and also gives prediction results of data. Deep

learning has 3 (three) major categories: unsupervised,

partially supervised (semi-supervised), and supervised

[6]. The examples of deep learning methods are

Convolutional Neural Network (CNN), Multilayer

Perceptron (MLP), Long Short-Term Memory (LSTM),
Recurrent Neural Network (RNN), Generative

Adversarial Networks (GAN), Deep Reinforcement

Learning (DRL), Self-Organizing Maps (SOM), etc.

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

388

This study cannot be separated from the prior research.

There are many kinds of research about malware

detection with deep learning method approaches.

In 2018, the research entitled “Evaluation of

Convolutional Neural Networks Features for Malware

Detection” conducted by Kemal Özkan, et al. This

research aims to search for the connection between

malware binaries on the grayscale color representative

that developed with feature extraction and classifiers

(Softmax, KNN, and SVM) with Convolutional Neural
Networks (CNN). The structure used in this research is

VGG16. They are using SARVAM as the used dataset.

The result is CNN is a method that can be used to

classify malware, which generates the accuracy of 85%

when implemented to 36 malware families that consist

of 12.279 malware samples, and when implemented to

25 malware families that consist of 9.339 malware

families, the accuracy into 99% [7].

In the same year (2018), the research entitled “Intrusion

Detection via MLP Neural Network using an Arduino

Embedded System” was conducted by Felipe de
Almeida Florencio, et al. This research aims to

implement MLP for IDS using NSL-KDD as the dataset

and using Weka software. They are using nominal

features to numerical values and feature elimination

from 41 to 26 and have 2 (two) experiments: Test 1

(75% of the sample) and Test 2 (25% of the sample).

The measurements are divided into model and time

performance. Model measurements are consisting of

accuracy, precision, coverage, and f1-score, and

performance measurements are consisting of mean,

standard deviation, variance, and confidence interval.

The results are the value of Test 1 and Test 2 such as
accuracy (97.14% (Test 1) and 59.02% (Test 2)),

precision (98.6% (Test 1) and 96.1% (Test 2)), coverage

(95.2% (Test 1) and 52.1% (Test 2)), f1-score (96.9%

(Test 1) and 67.6% (Test 2)), mean (5716.04 μs),

standard deviation (66.38 μs), variance (4406.86 μs),

and confidence interval (5711.88 μs; 5720.20 μs) [8].

In 2019, the research entitled “LSTM deep learning

method for network intrusion detection system” was

conducted by Alaeddine Boukhalfa, et al. This research

aims to implement the Long Short-Term Memory

(LSTM) method to Network Intrusion Detection
System with NSL-KDD dataset, then it will be

compared with other 3 (three) classifiers that consists of

Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), and Decision Tree. The metrics that will be

used are accuracy, sensitivity, recall, precision, and f-

measure. The results are LSTM with 2 (two) classes and

4 (four) classes have the highest accuracy (99.98% and

99.93%), sensitivity (99.986% and 99.738%), recall

(Normal: 99.973% and 99.938%; Attack: 99.998% (2

classes), 99.906% (4 classes-DoS), 99,106% (4 classes-

U2R, R2L), and 100% (4 classes-Probe), precision

(Normal: 99.999% and 100%; Attack: 99.969% (2

classes), 99.924% (4 classes-DoS), 95.896% (4 classes-

U2R, R2L), and 99,863% (4 classes-Probe), and f-

measure (Normal: 99.986% and 99.969%; Attack:

99.983% (2 classes), 99.915% (4 classes-DoS),

97.475% (4 classes-U2R, R2L), and 99.931% (4

classes-Probe)) value, while SVM has the highest False

Positive Rate (1.765% and 0.493%) value [9].

In the same year (2019), the research entitled

“Detection and Prevention of Man-in-the-Middle

Spoofing Attacks in MANETs Using Predictive
Techniques in Artificial Neural Networks (ANN)” was

conducted by Robert A. Sowah, et.al. This research

aims to detect MitM attacks in MANET with ANN, by

using NS2 as the simulation platform. The performance

metrics that had been used are recall, precision,

accuracy, and f-measure. They are using 7 to 18 nodes

as the experiment scenarios. The result stated that it

could generate accuracy rates in the range of around

79%-93% from 7-18 nodes [10].

In 2020, the research entitled “Android Malware

Detection Based on a Hybrid Deep Learning Model”
was conducted by Tianliang Lu, et al. This research

aims to detect Android malware using the combination

of Deep Belief Network (DBN) and Gate Recurrent

Unit (GRU). The dataset used in this research is divided

into benign and malware samples. The number of

benign samples is 7000, while the number of malware

samples is 6298. The results are with using DBN-GRU

to detect Android malware could generate higher

accuracy (96.82%), precision (Benign-97.79% and

Malware-95.79%), and recall (Benign-96.09% and

Malware-97.62%) among deep learning or machine

learning method, even if using DBN or GRU only, and
have the higher accuracy when did repackage on the

malware among the antivirus software [11].

In 2021, the research entitled “Intrusion Detection

System using MLP and Chaotic Neural Networks” was

conducted by Pooja Shettar, et al. This research aims to

implement Multilayer Perceptron (MLP) method and

the combination of MLP and Chaotic Neural Networks,

using KDD Cup’99 dataset. The metrics consist of

accuracy, precision, FPR, and FNR. The result is that

the hybrid value from MLP and Chaotic Neural

Network has higher accuracy (99.21% and 94.8%) and
precision (99.91% and 90.3%), and lower FPR (0.00401

and 0.00478) and FNR (0.00213 and 0.00233) from

MLP itself [12].

Deep Learning could be able to predict various data

well, especially for detecting MitM [10]. Hence, in this

study, the MitM attack data is being processed and

analyzed [10]. Since the result of hybrid deep learning

method research can generate higher values than using

only 1 (one) deep learning method only [11][12],

therefore we are using an approach from the

combination of another 2 (two) deep learning methods,

which are CNN-MLP and CNN-LSTM, so we could

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

389

know whether by using a combination from CNN [7],

MLP [8], and LSTM [9] methods still could generate

the great values. We choose CNN, MLP, and LSTM

methods to be combined in this study based on the

research from [7][8][9], which is the methods in their

research that can handle data in large amounts with

sizeable accuracy and other performance metrics. Most

of these methods could generate an accuracy rate above

99%, and we will know whether using combining CNN

with MLP and LSTM still could generate 99%. The
dataset that will be used in this research is ARP MitM

Ettercap, which is from Kitsune Network Attack

Dataset. The type of MitM that will be used in this

research is ARP Spoofing. There are 3 (three) scenarios

to process the data, which are based on the Feature

Scaling that consists of Standard Scaler, Min-Max

Scaler, and Maximum Absolute Scaling

(MaxAbsScaler). The Feature Scaling will be set on

data preprocessing. The purpose of this study is to

determine the accuracy, recall, precision, and f1-Score

using CNN-MLP and CNN-LSTM methods for
processing the ARP MitM attack detection, then we

could compare which method has the highest accuracy

rate after doing model testing.

The rest of this journal is organized as follows: Section

1 explains the Introduction. Section 2 explains research

methods. Section 3 explains the result and discussion of

the study. Section 4 explains the conclusion of the study

and future works.

2. Research Methods

This section will be discussed about the dataset

information, the research model flow, data

preprocessing, and the methods (CNN-MLP and CNN-

LSTM).

2.1 Dataset and Research Model

In this study, we are using the ARP MitM Ettercap

dataset from Kitsune Network Attack Dataset. This

dataset is developed by Yisroel Mirsky, et al. in 2019,

from their journal entitled “Kitsune: An Ensemble of

Autoencoders for Online Network Intrusion Detection”.

It has 9 (nine) network attacks that consist of OS Scan

Nmap, Fuzzing Sfuzz, Video Injection, ARP MitM

Ettercap, Active Wiretap, SSDP Flood, SYN DoS, SSL

Renegotiation, and Mirai Telnet. Each attack has 3
(three) files: PCAP file, dataset file, and Label file. The

dataset is available on UCI Machine Learning

Repository website since October 16th, 2019 [13][14].

We are using 2 (two) files of ARP MitM for data

processing: data and label files. It has a total of 116

features, where the dataset file has 115 features and the

label file have 1 feature. Then, these files will be

merged into 1 (one) file. The information about the

dataset is shown in Table 1.

Table 1. Dataset Information

Attack file Samples Features File Size

ARP MitM

Ettercap Dataset

2504267 115 7.04 GB

ARP MitM

Ettercap Labels

2504267 1 30.7 MB

The data in this dataset is divided into 2 (two) traffic

statuses: Benign and Malicious. This status is shown in

the ‘label’ column, where ‘0’ value is stated as Benign

or normal traffic, whereas ‘1’ value is stated as

Malicious traffic or got MitM attack. We will combine
the benign and malicious traffic data to process in CNN-

MLP and CNN-LSTM. The traffic (benign and

malicious) percentage and sample number information

is shown in Table 2.

Table 2. Percentage of Benign and Malicious Samples in ARP MitM

Dataset (Label)

Traffic Percentage Number of Samples

Benign 54,3% 1358995

Malicious 45,7% 1145272

Total 2504267

Firstly, we collected the dataset from Kitsune Network
Attack Dataset, and process the ARP MitM Ettercap

Dataset; On data preprocessing, it contains NA values

drop, INF values drop, determine x and y values, Train-

Test Split, Feature Scaling (Standard Scaler, Min-Max

Scaler, and Maximum Absolute Scaling

(MaxAbsScaler)), One Hot Encoding, and reshape the

x_train and x_test. The Model is divided into 2 (two)

hybrid deep learning methods, which are CNN-MLP

and CNN-LSTM, then we will train the models to know

the accuracy and loss rates. The last step is to test the

model by evaluate the model and compare with model
training results, and then we were setting up the

prediction to know the rates of accuracy, recall,

precision, and F1-Score. The workflow of this research

is shown in Figure 1.

2.2 Data Preprocessing

After the dataset and label files have been merged, the

next step is data processing. In this step, we are

managing the dataset that will be used before the dataset

is being implemented in the models. There are 7 (seven)

steps of data preprocessing for this study, such as drop

NA values, drop INF values, determine x and y values,
train-test split, feature scaling, one hot encoding, and

reshape the x_train and x_test shapes.

We removed NA (Not Available) or null and INF

(Infinite) values first, then determining the x and y

values, which are the x values will be implemented to

115 columns (main data), whereas the y values will be

implemented to 1 column (label data).

On Train-Test Split [15], we are splitting the data train

and test from the merged dataset, in which the

percentage of training data is 60% and testing data is

40% [16], and the data would be randomly shuffled.

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

390

Figure 1. Research Flow Model

Feature Scaling [17] is the next method used for

merging the self-variables or feature ranges in data [18],

and it is involving value rescaling to make the data

processing easier [19]. The StandardScaler,

MinMaxScaler, and MaxAbsScaler [19] are used as the

form of feature scaling for x_train and x_test values.

StandardScaler is a feature scaling method that adjusts

the information inside of each component and will scale

them in such a way that makes the current dissemination

is revolved around 0, with a standard deviation of 1

[19]. MinMaxScaler is a feature scaling method that
widely recognized approach to standardizing the data,

where the base estimation for each component changes

to 0 and the most extreme estimation changes to 1, and

each other is changed in the range of 0 and 1 [19].

MaxAbsScaler is a feature scaling method that contrast

difference from other feature scaling that the outright

quality is mapped in the range of 0 and 1 [19]. By using

feature scaling, the accuracy rate could be increased.

Based on the research from [19], before implementing

any of the feature scaling methods, the accuracy rate is

in the range of 67%-69%, but when the feature scaling
methods has been applied, respectively, the accuracy

rates are increased to the range of 70%-75%

(StandardScaler); 72%-78% (MinMaxScaler); and

71%-77% (MaxAbsScaler). It also exist on f1-score,

recall, and precision the before implement any of

feature scaling method, respectively, the f1-score,

recall, and precision rates are in range of 0.3398-0.6449,

0.5-0.6417, and 0.4046-0.6431, and after the feature

scaling methods has been applied, respectively, the f1-

score, recall, and precision rates are increased to the

range of 0.6539-0.7193, 0.648-0.6827, 0.6505-0.6934

(StandardScaler); 0.6833-0.7843, 0.58-0.6943, 0.5689-
0.7122 (MinMaxScaler); 0.6945-0.7785, 0.5679-

0.6807, 0.5397-0.6972 (MaxAbsScaler).

One Hot Encoding is transforming a single variable

with n observations and d distinct values, to d binary

variables with each of n observations [20]. On One Hot

Encoding, it is applied to y_train and y_test values,

which is y_train and y_test values are contains label

column, so it could recognize the label whether the

condition is 0 or 1.

The last step in data preprocessing is reshaped the

x_train shape from (x_train.shape[0], 115) into

(x_train.shape[0], 115, 1), and reshaped the x_test
shape from (x_test.shape[0], 115) into (x_test.shape[0],

115, 1). The total of x_train.shape[0] is 1502560,

whereas the total of x_test.shape[0] is 1001707. The

shape of x_train and x_test needs to be changed, so it

could be process when build the models.

2.3. CNN-MLP and CNN-LSTM

CNN-MLP and CNN-LSTM are the models that will be

implemented in this study. Convolutional Neural

Networks (CNN) is a deep learning model for

processing the data that has grid patterns, and it is

designed to learn spacial feature hierarchy
automatically and adaptive, from low-level patterns to

high-level patterns. CNN typically has 3 (three) layers

that consist of convolution, pooling, and a fully

connected layer [21]. Multilayer Perceptron (MLP) is a

deep learning model that is categorized as a feed-

forward neural network with 1 (one) or more hidden

layer(s). The layer of MLP consists of an input layer,

hidden layer(s), and an output layer. The

backpropagation training algorithm is also used for

training MLP [22]. MLP has the ability in developing

non-linear models with high complexity, and the layer

consist of input, hidden, and output [23]. Long Short-
Term Memory (LSTM) is the form of deep Recurrent

Neural Network that learns order dependence within

sequential data and usually used for time-series data

classification [24].

Either using CNN-MLP or CNN-LSTM has the same

input shape: (None, 115, 1). The first model that will be

build is CNN-MLP. On CNN-MLP, in the CNN part,

we are using 2 (two) 1D CNN layers [25], 2 (two) Max

Pooling layers [26], 1 (one) Dropout layer [27], and 1

(one) Dense layer by using ReLU as the activation [28],

whereas in MLP part, we are using 2 (two) hidden
layers, 1 (one) Dropout layer [27], and 1 (one) Dense

layer by using ReLU as the activation [28], then we are

going to Fully Connected layer process, which is going

to Flatten layer [29] first, then using Sigmoid as

Activation in Dense layer [30]. The Output layer is the

last layer of CNN-MLP that will be through the training

phase using some parameters that are needed and will

determine the performance results in the testing phase.

The model flow of CNN-MLP is shown in Figure 2.

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

391

Figure 2. CNN-MLP Model Flow

The CNN-LSTM is the second model that will be build.

On CNN-LSTM, in the CNN part, same as in CNN-

MLP, we are using 2 (two) 1D CNN layers [25], 2 (two)

Max Pooling layers [26], 1 (one) Dropout layer [27],

and 1 (one) Dense layer by using ReLU as the activation

[28], whereas in LSTM part, we are using 2 (two)
LSTM layers, 1 (one) Dropout layer [27], and 1 (one)

Dense layer by using ReLU as the activation [28], then

we are going to Fully Connected layer process, which

is also going to Flatten layer [29] first, then using

Sigmoid as Activation in Dense [30]. The Output layer

is the last layer of CNN-LSTM that will be through the

training phase using some parameters that are needed

and will determine the performance results in the testing

phase. The model flow of CNN-LSTM is shown in

Figure 3.

Figure 3. CNN-LSTM Model Flow

By implementing these models (CNN-MLP and CNN-

LSTM) for detecting MitM attacks, we will know which

model has generating the better performance metrics

with different proposed Feature Scaling methods. After

building the models, the next steps in data processing

are training the models by using the parameter and its

values, and then we are going to test the models to

perform the results.

3. Results and Discussions

This section will be discussed about the experimental

setup, model training and testing process, the

performance metrics that will be used, and the results of

this study.

3.1. Experimental Setup

To implementing the CNN-MLP and CNN-LSTM

models using the ARP MitM Ettercap dataset, we are

using Python (ver. 3.10.2) – Jupyter Notebook [31] in

Visual Studio Code, with TensorFlow and Keras [32] to
create CNN-MLP and CNN-LSTM models. This

software runs in a PC with the specifications such as

Windows 10 Pro 64-bit, 11th Gen Intel® Core (TM) i5-

11400 @ 2.60GHz (12 CPUs) ~2.6 GHz, 16 GB RAM.

We have implemented 3 (three) scenarios in our

experiments, which is using different Feature Scaling

that consist of Standard Scaler (StandardScaler), Min-

Max Scaler (MinMaxScaler), and Maximum Absolute

Scaling (MaxAbsScaler) with CNN-MLP and CNN-

LSTM models.

3.2. Model Training

The next step after data preprocessing is building the

CNN-MLP and CNN-LSTM models, using (None, 115,

1) as the inputs. After each model has been created, the

next step is the model training phase, using the

parameters to support this model process, consisting of

Epoch, Batch Size, Optimizer, Loss, Learning Rate,

Validation Split, and Metric. as shown in Table 3. We

also use Validation Split (0.2), for displaying the

validation accuracy and loss in each epoch iteration in

the training phase.

Table 3. Parameter Values of Model Training

Parameter Value

Epoch 5

Batch Size 512

Optimizer Adam

Loss Binary Cross-Entropy

Learning Rate

Validation Split

1e-4

0.2

Metric Accuracy and Loss

While doing training phase on the ARP MitM dataset

using these parameters, the training time of CNN-MLP

is way faster than CNN-LSTM, using various Feature

Scaling methods. CNN-MLP needs around 50 minutes,

while CNN-LSTM needs around 200 minutes overall.

For each epoch iteration, using CNN-MLP needs

around 500 seconds, while CNN-LSTM needs around

3000 seconds.

The Model accuracy during the training session using

CNN-MLP and CNN-LSTM along with various

Feature Scaling methods will be combined into a plot

graph that has been generated and it consists of training

(blue line) and validation (orange line), that shows the

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

392

accuracy value on each epoch iteration in Figure 4 until

Figure 9.

Figure 4. Model Accuracy of CNN-MLP using StandardScaler

In Figure 4, with 5 (five) epoch iterations on the CNN-

MLP model using the StandardScaler method, the

accuracy rates of training keep increasing from 1st until

5th epoch iterations, while the accuracy of validation

had increased from 1st until 4th epoch but had decreased

from 4th until 5th epoch iterations. The accuracy rates of

training are still stable. However, the accuracy rates of

validation are unstable, but still good enough. The

average of accuracy rates between training and

validation are still above 0.99. This model accuracy

graph is most stable among other accuracy graphs.

Figure 5. Model Accuracy of CNN-MLP using MinMaxScaler

In Figure 5, with 5 (five) epoch iterations on the CNN-

MLP model using MinMaxScaler, the accuracy of

training keeps increasing from 1st until 5th epoch

iterations, while the accuracy of validation had

increased from 1st until 2nd epoch iterations, but had
decreased from 2nd until 3rd epoch iterations, and from

3rd until 5th epoch iterations, it has increased. The

accuracy rates of training are still stable. However, the

accuracy rates of validation are unstable. The average

of accuracy rates is still above 0.99.

Figure 6. Model Accuracy of CNN-MLP using MaxAbsScaler

In Figure 6, with 5 (five) epoch iterations on the CNN-

MLP model using MaxAbsScaler, the accuracy of

training had increased from 1st until 4th epoch iterations

but had decreased from 4th until 5th epoch iterations,

while the accuracy of validation had increased from 1st

until 4th epoch iterations but had decreased from 4th until

5th epoch iterations. Overall, the rates between training

and validation graph are quite stable, although it has

been decreased at once on training and validation, and

the accuracy rates are still above 0.99.

Figure 7. Model Accuracy of CNN-LSTM using StandardScaler

In Figure 7, with 5 (five) epoch iterations on the CNN-

LSTM model using StandardScaler, the accuracy of

training keeps increasing from 1st until 5th epoch

iterations, while the accuracy of validation had
increased from 1st until 2nd epoch iterations, decreased

from 2nd until 3rd epoch iterations, increased from 3rd

until 4th epoch iterations, and then had decreased from

4th until 5th epoch iterations. The accuracy rates of

training are still stable. However, the accuracy rates of

validation are unstable. The average of accuracy rates is

still above 0.99 after the 2nd epoch, in training and

validation.

Figure 8. Model Accuracy of CNN-LSTM using MinMaxScaler

In Figure 8, with 5 (five) epoch iterations on the CNN-

LSTM model using MinMaxScaler, the accuracy of

training keeps increasing from 1st until 5th epoch

iterations, while the accuracy of validation had

increased from 1st until 4th epoch iteration but had

decreased from 4th until 5th. The accuracy rates of

training are still stable. However, the accuracy rates of
validation are unstable, especially if we compared to the

prior graphs because the validation rates have

significantly differenced on each epoch iterations. The

average of accuracy rates is still above 0.98.

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

393

Figure 9. Model Accuracy of CNN-LSTM using MaxAbsScaler

In Figure 9, with 5 (five) epoch iterations on the CNN-

LSTM model using MaxAbsScaler, the accuracy of

training keeps increasing from 1st until 5th epoch

iterations, while the accuracy of validation had
increased from 1st until 4th epoch iterations but had

decreased from 4th until 5th. The accuracy rates of

training are still stable. However, the accuracy rates of

validation are unstable, especially if we compared to the

prior graphs because the validation rates have

significantly differenced on each epoch iterations.

Besides the accuracy rates, we also knew the loss rates

of each scenario. The Model Loss during the training

phase with CNN-MLP and CNN-LSTM models along

with various Feature Scaling methods will be combined

into plot graphs that has been generated, and it consists

of training (blue line) and validation (orange line)
results. Model loss is one of the important

measurements in model training, because the model

loss could be determined if the model is overfitting,

underfitting, or good fit. Therefore, the plot graph

shows the loss value on each epoch iterations in Figure

10 until Figure 15.

Figure 10. Model Loss of CNN-MLP using StandardScaler

In Figure 10, with 5 (five) epoch iterations on the CNN-

MLP model using StandardScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

while the loss of validation had decreased and increased

on every epoch iteration, from 1st until 5th epoch

iterations. The loss rates of training are still stable.

However, the loss rates of validation are unstable. The

average of loss rates is still below 0.02.

Figure 11. Model Loss of CNN-MLP using MinMaxScaler

In Figure 11, with 5 (five) epoch iterations on the CNN-

MLP model using MinMaxScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

while the loss of validation had decreased from 1st until
2nd epoch iterations, then increased from 2nd until 3rd

epoch iterations, and from 3rd until 5th, it keeps

decreasing. The loss rates of training are still stable.

However, the loss rates of validation are unstable. The

average of loss rates is still below 0.05.

Figure 12. Model Loss of CNN-MLP using MaxAbsScaler

In Figure 12, with 5 (five) epoch iterations on the CNN-
MLP model using MaxAbsScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

while the loss of validation also keeps decreasing as

well. Overall, the rates between training and validation

graph are still stable, and the loss rates are still below

0.025. This graph is the most stable among other loss

graphs because training and validation rates are keep

decreasing as well on each epoch iterations.

Figure 13. Model Loss of CNN-LSTM using StandardScaler

In Figure 13, with 5 (five) epoch iterations on the CNN-

LSTM model using StandardScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

394

while the loss of validation had decreased and increased

on every epoch iteration. The loss rates of training are

still stable. However, the loss rates of validation are

unstable, and it has significantly differenced on the rates

in each epoch iterations.

Figure 14. Model Loss of CNN-LSTM using MinMaxScaler

In Figure 14, with 5 (five) epoch iterations on the CNN-

LSTM model using MinMaxScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

while the loss of validation had decreased from 1st until

4th epoch iterations and increased from 4th until 5th

epoch iterations. The loss rates of training are still

stable. However, the loss rates of validation are

unstable, and it has significantly differenced on the rates

in each epoch iterations.

Figure 15. Model Loss of CNN-LSTM using MaxAbsScaler

In Figure 15, with 5 (five) epoch iterations on the CNN-

LSTM model using MaxAbsScaler, the loss of training

keeps decreasing from 1st until 5th epoch iterations,

while the loss of validation had decreased from 1st until

4th epoch iterations and increase from 4th until 5th epoch

iterations. The loss rates of training are still stable.

However, the loss rates of validation are unstable, and
it has significantly differenced on the rates in each

epoch iterations.

From overall graphs (model accuracy and loss) that

have been generated, most of the model that has been

built is indicated as the overfitting models, although it

has some slight difference between training and

validation. It occurred because the model could be

complicated when training its data, that could make the

performance results of validation or test become poor

[33].

3.3. Performance Metrics

The performance metrics used in this study are

accuracy, precision, recall, and f1-Score, based on the

research from [7], [8], [9], [10], [11], and [12].

Accuracy is the percentage of samples that are correctly

classified above the total number of samples. Recall or

sensitivity is to reflects the ability of systems to detect

anomalies. Precision is the predictably positive

predictor ratio to total positive observation predictions.

Whereas F1-Score is the weighted average precision

and recall [34].

3.4. Results

After model testing was conducted, the Accuracy,

Precision, Recall, and F1-Score results were obtained

from CNN-MLP and CNN-LSTM to ARP MitM attack

detection, based on Standard Scaler, Min-Max Scaler,

and Abs Max Scaler, shown in Table 4, Table 5, and

Table 6. We separated the Precision, Recall, and F1-

Score based on the label that contains 1 (MitM Attack)

and 0 (Benign).

Table 4. Performance Results from CNN-MLP and CNN-LSTM

using Standard Scaler

Model Label Accuracy Precision Recall F1-

Score

CNN-

MLP

0
99.74%

1.00 1.00 1.00

1 1.00 1.00 1.00

CNN-

LSTM

0

1 99.44%
1.00

0.99

0.99

0.99

0.99

0.99

Based on the testing results by using Standard Scaler on

CNN-MLP and CNN-LSTM models, both models got

well rates of accuracy, precision, recall, and f1-Score,

which is generated above 99%. CNN-MLP generated a

higher accuracy rate than CNN-LSTM with a

percentage of 99.74%.

Table 5. Performance Results from CNN-MLP and CNN-LSTM

using Min-Max Scaler

Model Label Accuracy Precision Recall F1-

Score

CNN-

MLP

0
99.67%

0.99 1.00 1.00

1 1.00 0.99 1.00

CNN-

LSTM

0
99.40%

0.99 1.00 0.99

1 1.00 0.99 0.99

Based on the testing results by using Min-Max Scaler

on CNN-MLP and CNN-LSTM models, both models
got well rates of accuracy, Precision, Recall, and F1-

Score which is generated above 99%. CNN-MLP

generated a higher accuracy rate than CNN-LSTM with

a percentage of 99.67%.

Table 6. Performance Results from CNN-MLP and CNN-LSTM

using Abs Max Scaler

Model Label Accuracy Precision Recall F1-

Score

CNN-

MLP

0
99.57%

0.99 1.00 1.00

1 1.00 0.99 1.00

CNN-

LSTM

0
98.68%

1.00 0.98 0.99

1 0.97 1.00 0.99

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

395

Based on the testing results by using Min-Max Scaler

on CNN-MLP and CNN-LSTM models, both models

got the good rates of accuracy, precision, recall, and f1-

Score which is generated above 99%. CNN-MLP

generated a higher accuracy rate than CNN-LSTM with

a percentage of 99.57%.

For overall scenarios that have been conducted in this

study, using CNN-MLP with StandardScaler got the

highest accuracy rate among other methods, which is

got a percentage of 99.74%.

4. Conclusion

This study aims to implement the hybrid deep learning

methods (CNN-MLP and CNN-LSTM) to detect ARP

MitM using Kitsune Network Attack Dataset and has 3

(three) scenarios based on the used feature selection

(StandardScaler, MinMaxScaler, and MaxAbsScaler).

The results prove that CNN-MLP can generate better a

accuracy rate than CNN-LSTM (99.74%, 99.67%, and

99.57%, respectively). For overall scenarios, using

CNN-MLP with Standard Scaler could achieve the

highest accuracy rate among other scenarios (99.74%).
We also generate the accuracy and loss of each scenario

using the graphs, which state that mostly, the training

has stable values on each epoch iteration and the

validation has unstable values on each epoch iteration.

Most of the graphs are indicated as the overfitting

models, although it has some slight difference between

training and validation, especially in CNN-MLP model.

For future works, it could implement other hybrid deep

learning or machine learning methods on ARP MitM

attack detection. We could also implement feature

selection or extraction methods for the dataset to stable

the validation results in the training phase and reduce
the overfitting or underfitting model, as well as combine

the ARP MitM Ettercap dataset with other MitM attacks

in the Kitsune dataset (Video Injection and Active

Wiretap) or combine the entire dataset (Kitsune NIDS)

to be processed.

Reference

[1] A. Mallik, A. Ahsan, M. M. Z. Shahadat, and J. C. Tsou, “Man-

in-the-middle-attack: Understanding in simple words,”

International Journal of Data and Network Science, vol. 3, no.

2, pp. 77–92, 2019, doi: 10.5267/j.ijdns.2019.1.001.

[2] C. Singleton et al., “X-Force Threat Intelligence Index 2022,”

2022. [Online]. Available:

https://www.ibm.com/downloads/cas/ADLMYLAZ

[3] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F.

Ahmad, “Network intrusion detection system: A systematic

study of machine learning and deep learning approaches,”

Transactions on Emerging Telecommunications Technologies,

vol. 32, no. 1, Jan. 2021, doi: 10.1002/ett.4150.

[4] B. Neyole Misiko Jacob, M. Yusuf Wanjala, N. Misiko Jacob α,

and M. Yusuf Wanjala σ, “A Review of Intrusion Detection

Systems,” C, 2017. [Online]. Available:

https://globaljournals.org/GJCST_Volume17/3-A-Review-of-

Intrusion-Detection.pdf

[5] B. Huy, N. Q. Truong, N. Q. Khiem, K. P. Poudel, and H.

Temesgen, “Deep learning models for improved reliability of

tree aboveground biomass prediction in the tropical evergreen

broadleaf forests,” Forest Ecology and Management, vol. 508,

Mar. 2022, doi: 10.1016/j.foreco.2022.120031.

[6] L. Alzubaidi et al., “Review of deep learning: concepts, CNN

architectures, challenges, applications, future directions,”

Journal of Big Data, vol. 8, no. 1, Dec. 2021, doi:

10.1186/s40537-021-00444-8.

[7] K. Özkan, Ş. Işik, and Y. Kartal, “Evaluation of convolutional

neural network features for malware detection,” in 6th

International Symposium on Digital Forensic and Security,

ISDFS 2018 - Proceeding, May 2018, vol. 2018-January, pp. 1–

4. doi: 10.1109/ISDFS.2018.8355390.

[8] F. de Almeida Florencio, E. D. Moreno, H. T. MacEdo, R. J. P.

de Britto Salgueiro, F. B. do Nascimento, and F. A. O. Santos,

“Intrusion detection via MLP neural network using an arduino

embedded system,” in Brazilian Symposium on Computing

System Engineering, SBESC, Jul. 2018, vol. 2018-November,

pp. 190–195. doi: 10.1109/SBESC.2018.00036.

[9] A. Boukhalfa, A. Abdellaoui, N. Hmina, and H. Chaoui, “LSTM

deep learning method for network intrusion detection system,”

International Journal of Electrical and Computer Engineering,

vol. 10, no. 3, pp. 3315–3322, 2020, doi:

10.11591/ijece.v10i3.pp3315-3322.

[10] R. A. Sowah, K. B. Ofori-Amanfo, G. A. Mills, and K. M.

Koumadi, “Detection and prevention of man-in-the-middle

spoofing attacks in MANETs using predictive techniques in

Artificial Neural Networks (ANN),” Journal of Computer

Networks and Communications, vol. 2019, 2019, doi:

10.1155/2019/4683982.

[11] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang, “Android

malware detection based on a hybrid deep learning model,”

Security and Communication Networks, vol. 2020, 2020, doi:

10.1155/2020/8863617.

[12] P. Shettar, A. v. Kachavimath, M. M. Mulla, G. N. D. D.

Narayan, and G. Hanchinmani, “Intrusion Detection System

using MLP and Chaotic Neural Networks,” in 2021

International Conference on Computer Communication and

Informatics, ICCCI 2021, Jan. 2021, vol. 2021-January. doi:

10.1109/ICCCI50826.2021.9457024.

[13] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:

An Ensemble of Autoencoders for Online Network Intrusion

Detection,” Feb. 2018. doi: 10.14722/ndss.2018.23204.

[14] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune

Network Attack Dataset Data Set,” Oct. 16, 2019.

https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attac

k+Dataset

[15] D. S. Prashanth, R. V. K. Mehta, and N. Sharma, “Classification

of Handwritten Devanagari Number - An analysis of Pattern

Recognition Tool using Neural Network and CNN,” Procedia

Computer Science, vol. 167, no. 2019, pp. 2445–2457, 2020,

doi: 10.1016/j.procs.2020.03.297.

[16] T. Acharya, I. Khatri, A. Annamalai, and M. F. Chouikha,

“Efficacy of Heterogeneous Ensemble Assisted Machine

Learning Model for Binary and Multi-Class Network Intrusion

Detection,” 2021 IEEE International Conference on Automatic

Control and Intelligent Systems, I2CACIS 2021 - Proceedings,

no. June, pp. 408–413, 2021, doi:

10.1109/I2CACIS52118.2021.9495864.

[17] M. A. Umar and C. Zhanfang, “Effects of Feature Selection and

Normalization on Network Intrusion Detection,” pp. 1–25,

2020, doi: 10.36227/techrxiv.12480425.

[18] X. Wan, “Influence of feature scaling on convergence of

gradient iterative algorithm,” in Journal of Physics: Conference

Series, Jun. 2019, vol. 1213, no. 3. doi: 10.1088/1742-

6596/1213/3/032021.

[19] V. N. G. Raju, K. P. Lakshmi, V. M. Jain, A. Kalidindi, and V.

Padma, “Study the Influence of Normalization/Transformation

process on the Accuracy of Supervised Classification,” in

Proceedings of the 3rd International Conference on Smart

Systems and Inventive Technology, ICSSIT 2020, Aug. 2020, pp.

729–735. doi: 10.1109/ICSSIT48917.2020.9214160.

 Hartina Hiromi Satyanegara, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 3 (2022)

DOI: https://doi.org/10.29207/resti.v6i3.4035

Creative Commons Attribution 4.0 International License (CC BY 4.0)

396

[20] K. Potdar, T. S., and C. D., “A Comparative Study of

Categorical Variable Encoding Techniques for Neural Network

Classifiers,” International Journal of Computer Applications,

vol. 175, no. 4, pp. 7–9, Oct. 2017, doi:

10.5120/ijca2017915495.

[21] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi,

“Convolutional neural networks: an overview and application in

radiology,” Insights into Imaging, vol. 9, no. 4. Springer Verlag,

pp. 611–629, Aug. 01, 2018. doi: 10.1007/s13244-018-0639-9.

[22] M. H. N. Solhdar, M. J. Solahdar, and S. Eskandari, “An

intrusion detection system with a parallel multi-layer neural

network,” Journal of Mathematical Modeling, vol. 9, no. 3, pp.

437–450, 2021, doi: 10.22124/jmm.2021.17362.1502.

[23] S. Abdullah, M. Ismail, and Ahmed, “Multi-Layer Perceptron

Model for Air Quality Prediction,” 2019. [Online]. Available:

https://einspem.upm.edu.my/journal/fullpaper/vol13sdecember

/8.pdf

[24] T. D. Pham, “Time–frequency time–space LSTM for robust

classification of physiological signals,” Scientific Reports, vol.

11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-86432-7.

[25] J. Alikhanov, W. Kim, M. Azizjon, and A. Jumabek, “1D CNN

based network intrusion detection with normalization on

imbalanced data,” 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/9064976

[26] N. Sabri, “A Comparison between Average and Max-Pooling in

Convolutional Neural Network for Scoliosis Classification,”

International Journal of Advanced Trends in Computer Science

and Engineering, vol. 9, no. 1.4, pp. 689–696, Sep. 2020, doi:

10.30534/ijatcse/2020/9791.42020.

[27] J. Yang and G. Yang, “Modified convolutional neural network

based on dropout and the stochastic gradient descent optimizer,”

Algorithms, vol. 11, no. 3, pp. 1–15, Mar. 2018, doi:

10.3390/a11030028.

[28] A. M. Javid, S. Das, M. Skoglund, and S. Chatterjee, “A ReLU

Dense Layer to Improve the Performance of Neural Networks,”

Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.13572

[29] E. Jeczmionek and P. A. Kowalski, “Flattening layer pruning in

convolutional neural networks,” Symmetry (Basel), vol. 13, no.

7, Jul. 2021, doi: 10.3390/sym13071147.

[30] H. Pratiwi et al., “Sigmoid Activation Function in Selecting the

Best Model of Artificial Neural Networks,” in Journal of

Physics: Conference Series, Mar. 2020, vol. 1471, no. 1. doi:

10.1088/1742-6596/1471/1/012010.

[31] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire,

“Understanding and improving the quality and reproducibility

of Jupyter notebooks,” Empirical Software Engineering, vol.

26, no. 4, 2021, doi: 10.1007/s10664-021-09961-9.

[32] S. P. Pillai, T. Radha Ramanan, and S. D. Madhu Kumar,

“Evaluating deep learning paradigms with TensorFlow and

Keras for software effort estimation,” International Journal of

Scientific and Technology Research, vol. 9, no. 4, pp. 2753–

2761, 2020, [Online]. Available: http://www.ijstr.org/final-

print/apr2020/Evaluating-Deep-Learning-Paradigms-With-

Tensorflow-And-Keras-For-Software-Effort-Estimation.pdf

[33] H. Zhang, L. Zhang, and Y. Jiang, “Overfitting and Underfitting

Analysis for Deep Learning Based End-to-end Communication

Systems,” 2019. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8927876

[34] Q. R. S. Fitni and K. Ramli, “Implementation of Ensemble

Learning and Feature Selection for Performance Improvements

in Anomaly-Based Intrusion Detection Systems,” in The 2020

IEEE International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology (IAICT), 2020,

pp. 118–124. [Online]. Available:

https://ieeexplore.ieee.org/document/9172014

