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Abstract  

Man in the Middle (MitM) is one of the attack techniques conducted for eavesdropping on data transitions or conversations 
between users in some systems secretly. It has a sizeable impact because it could make the attackers will do another attack, 
such as website or system deface or phishing. Deep Learning could be able to predict various data well. Hence, in this study, 
we would like to present the approach to detect MitM attacks and process its data, by implementing hybrid deep learning 
methods. We used 2 (two) combinations of the Deep Learning methods, which are CNN-MLP and CNN-LSTM. We also used 

various Feature Scaling methods before building the model and will determine the better hybrid deep learning methods for 
detecting MitM attack, as well as the feature selection methods that could generate the highest accuracy. Kitsune Network 
Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results prove that CNN-MLP has better results than 
CNN-LSTM on average, which has the accuracy rate respectively at 99.74%, 99.67%, and 99.57%, and using Standard Scaler 
has the highest accuracy (99.74%) among other scenarios. 

Keywords: MitM, Kitsune Network Attack Dataset, CNN-MLP, CNN-LSTM 

1. Introduction  

Technology growth is more sophisticated and rapid in 

this era, and it makes many people can get the desired 

information easier and more efficient. But 

unfortunately, some people misuse the technology itself 

to get profit for them and loss for the victim at the same 

time. The attacks could be occured on digital assets, 

such as websites, email, social media, information 

systems, etc. 

MitM (Man in the Middle) attacks is one of the attacks 

by accessing the target system, and usually, the 

attackers are in between the data transmission or 

conversations between 1 (one) user to another user or 

server. Subsequently, they could conduct another 

attack, such as phishing, by sending an email to the 

victim to access the link from the attacker, as if it is from 

an official company or institution [1].  

It has a sizeable impact because it could create a way 

for other attacks. Based on X-Force Threat Intelligence 

Index 2022 created by the IBM Security team, it is 
mentioned that Mozi botnet attacks that target IoT 

(Internet of Things) and OT (Operational Technology), 

the attackers can conduct MitM attacks by infecting 

routers to spread ransomware to IoT and OT [2].  

Usually, to prevent and minimalize the incoming 

attacks on our system, we could be using NIDS 

(Network-based Intrusion Detection System). NIDS is 

1 (one) type of the IDS (Intrusion Detection System), 

besides anomaly-based and signature-based, that 

monitors the network traffic, and it can detect whether 

the traffic is benign or malicious and suspicious for our 

system [3]. Besides that, NIDS could detect the network 

traffic by comparing the pattern or signature of the 

database. NIDS is also referred to as packet-sniffer [4]. 

Deep Learning (DL) is a subset of Machine Learning 

(ML), where deep learning is an important part of 

Artificial Intelligence (AI) [5]. Deep learning can 

process the data from any discipline, gives decision-

making, and also gives prediction results of data. Deep 

learning has 3 (three) major categories: unsupervised, 

partially supervised (semi-supervised), and supervised 

[6]. The examples of deep learning methods are 

Convolutional Neural Network (CNN), Multilayer 

Perceptron (MLP), Long Short-Term Memory (LSTM), 
Recurrent Neural Network (RNN), Generative 

Adversarial Networks (GAN), Deep Reinforcement 

Learning (DRL), Self-Organizing Maps (SOM), etc.  
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This study cannot be separated from the prior research. 

There are many kinds of research about malware 

detection with deep learning method approaches. 

In 2018, the research entitled “Evaluation of 

Convolutional Neural Networks Features for Malware 

Detection” conducted by Kemal Özkan, et al. This 

research aims to search for the connection between 

malware binaries on the grayscale color representative 

that developed with feature extraction and classifiers 

(Softmax, KNN, and SVM) with Convolutional Neural 
Networks (CNN). The structure used in this research is 

VGG16. They are using SARVAM as the used dataset. 

The result is CNN is a method that can be used to 

classify malware, which generates the accuracy of  85% 

when implemented to 36 malware families that consist 

of 12.279 malware samples, and when implemented to 

25 malware families that consist of 9.339 malware 

families, the accuracy into 99% [7].  

In the same year (2018), the research entitled “Intrusion 

Detection via MLP Neural Network using an Arduino 

Embedded System” was conducted by Felipe de 
Almeida Florencio, et al. This research aims to 

implement MLP for IDS using NSL-KDD as the dataset 

and using Weka software. They are using nominal 

features to numerical values and feature elimination 

from 41 to 26 and have 2 (two) experiments: Test 1 

(75% of the sample) and Test 2 (25% of the sample). 

The measurements are divided into model and time 

performance. Model measurements are consisting of 

accuracy, precision, coverage, and f1-score, and 

performance measurements are consisting of mean, 

standard deviation, variance, and confidence interval. 

The results are the value of Test 1 and Test 2 such as 
accuracy (97.14% (Test 1) and 59.02% (Test 2)), 

precision (98.6% (Test 1) and 96.1% (Test 2)), coverage 

(95.2% (Test 1) and 52.1% (Test 2)), f1-score (96.9% 

(Test 1) and 67.6% (Test 2)), mean (5716.04 μs), 

standard deviation (66.38 μs), variance (4406.86 μs), 

and confidence interval (5711.88 μs; 5720.20 μs) [8]. 

In 2019, the research entitled “LSTM deep learning 

method for network intrusion detection system” was 

conducted by Alaeddine Boukhalfa, et al. This research 

aims to implement the Long Short-Term Memory 

(LSTM) method to Network Intrusion Detection 
System with NSL-KDD dataset, then it will be 

compared with other 3 (three) classifiers that consists of 

Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), and Decision Tree. The metrics that will be 

used are accuracy, sensitivity, recall, precision, and f-

measure. The results are LSTM with 2 (two) classes and 

4 (four) classes have the highest accuracy (99.98% and 

99.93%), sensitivity (99.986% and 99.738%), recall 

(Normal: 99.973% and 99.938%; Attack: 99.998% (2 

classes), 99.906% (4 classes-DoS), 99,106% (4 classes-

U2R, R2L), and 100% (4 classes-Probe), precision 

(Normal: 99.999% and 100%; Attack: 99.969% (2 

classes), 99.924% (4 classes-DoS), 95.896% (4 classes-

U2R, R2L), and 99,863% (4 classes-Probe), and f-

measure (Normal: 99.986% and 99.969%; Attack: 

99.983% (2 classes), 99.915% (4 classes-DoS), 

97.475% (4 classes-U2R, R2L), and 99.931% (4 

classes-Probe)) value, while SVM has the highest False 

Positive Rate (1.765% and 0.493%) value [9].  

In the same year (2019), the research entitled 

“Detection and Prevention of Man-in-the-Middle 

Spoofing Attacks in MANETs Using Predictive 
Techniques in Artificial Neural Networks (ANN)” was 

conducted by Robert A. Sowah, et.al. This research 

aims to detect MitM attacks in MANET with ANN, by 

using NS2 as the simulation platform. The performance 

metrics that had been used are recall, precision, 

accuracy, and f-measure. They are using 7 to 18 nodes 

as the experiment scenarios. The result stated that it 

could generate accuracy rates in the range of around 

79%-93% from 7-18 nodes [10]. 

In 2020, the research entitled “Android Malware 

Detection Based on a Hybrid Deep Learning Model” 
was conducted by Tianliang Lu, et al. This research 

aims to detect Android malware using the combination 

of Deep Belief Network (DBN) and Gate Recurrent 

Unit (GRU). The dataset used in this research is divided 

into benign and malware samples. The number of 

benign samples is 7000, while the number of malware 

samples is 6298. The results are with using DBN-GRU 

to detect Android malware could generate higher 

accuracy (96.82%), precision (Benign-97.79% and 

Malware-95.79%), and recall (Benign-96.09% and 

Malware-97.62%) among deep learning or machine 

learning method, even if using DBN or GRU only, and 
have the higher accuracy when did repackage on the 

malware among the antivirus software [11]. 

In 2021, the research entitled “Intrusion Detection 

System using MLP and Chaotic Neural Networks” was 

conducted by Pooja Shettar, et al. This research aims to 

implement Multilayer Perceptron (MLP) method and 

the combination of MLP and Chaotic Neural Networks, 

using KDD Cup’99 dataset. The metrics consist of 

accuracy, precision, FPR, and FNR. The result is that 

the hybrid value from MLP and Chaotic Neural 

Network has higher accuracy (99.21% and 94.8%) and 
precision (99.91% and 90.3%), and lower FPR (0.00401 

and 0.00478) and FNR (0.00213 and 0.00233) from 

MLP itself [12]. 

Deep Learning could be able to predict various data 

well, especially for detecting MitM [10]. Hence, in this 

study, the MitM attack data is being processed and 

analyzed [10]. Since the result of hybrid deep learning 

method research can generate higher values than using 

only 1 (one) deep learning method only [11][12], 

therefore we are using an approach from the 

combination of another 2 (two) deep learning methods, 

which are CNN-MLP and CNN-LSTM, so we could 
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know whether by using a combination from CNN [7], 

MLP [8], and LSTM [9] methods still could generate 

the great values. We choose CNN, MLP, and LSTM 

methods to be combined in this study based on the 

research from [7][8][9], which is the methods in their 

research that can handle data in large amounts with 

sizeable accuracy and other performance metrics. Most 

of these methods could generate an accuracy rate above 

99%, and we will know whether using combining CNN 

with MLP and LSTM still could generate 99%. The 
dataset that will be used in this research is ARP MitM 

Ettercap, which is from Kitsune Network Attack 

Dataset. The type of MitM that will be used in this 

research is ARP Spoofing. There are 3 (three) scenarios 

to process the data, which are based on the Feature 

Scaling that consists of Standard Scaler, Min-Max 

Scaler, and Maximum Absolute Scaling 

(MaxAbsScaler). The Feature Scaling will be set on 

data preprocessing. The purpose of this study is to 

determine the accuracy, recall, precision, and f1-Score 

using CNN-MLP and CNN-LSTM methods for 
processing the ARP MitM attack detection, then we 

could compare which method has the highest accuracy 

rate after doing model testing. 

The rest of this journal is organized as follows: Section 

1 explains the Introduction. Section 2 explains research 

methods. Section 3 explains the result and discussion of 

the study. Section 4 explains the conclusion of the study 

and future works. 

2. Research Methods 

This section will be discussed about the dataset 

information, the research model flow, data 

preprocessing, and the methods (CNN-MLP and CNN-

LSTM). 

2.1 Dataset and Research Model 

In this study, we are using the ARP MitM Ettercap 

dataset from Kitsune Network Attack Dataset. This 

dataset is developed by Yisroel Mirsky, et al. in 2019, 

from their journal entitled “Kitsune: An Ensemble of 

Autoencoders for Online Network Intrusion Detection”. 

It has 9 (nine) network attacks that consist of OS Scan 

Nmap, Fuzzing Sfuzz, Video Injection, ARP MitM 

Ettercap, Active Wiretap, SSDP Flood, SYN DoS, SSL 

Renegotiation, and Mirai Telnet. Each attack has 3 
(three) files: PCAP file, dataset file, and Label file. The 

dataset is available on UCI Machine Learning 

Repository website since October 16th, 2019 [13][14]. 

We are using 2 (two) files of ARP MitM for data 

processing: data and label files. It has a total of 116 

features, where the dataset file has 115 features and the 

label file have 1 feature. Then, these files will be 

merged into 1 (one) file. The information about the 

dataset is shown in Table 1. 

 

Table 1. Dataset Information 

Attack file Samples Features File Size 

ARP MitM 

Ettercap Dataset 

2504267 115 7.04 GB 

ARP MitM 

Ettercap Labels 

2504267 1 30.7 MB 

The data in this dataset is divided into 2 (two) traffic 

statuses: Benign and Malicious. This status is shown in 

the ‘label’ column, where ‘0’ value is stated as Benign 

or normal traffic, whereas ‘1’ value is stated as 

Malicious traffic or got MitM attack. We will combine 
the benign and malicious traffic data to process in CNN-

MLP and CNN-LSTM. The traffic (benign and 

malicious) percentage and sample number information 

is shown in Table 2. 

Table 2. Percentage of Benign and Malicious Samples in ARP MitM 

Dataset (Label) 

Traffic Percentage Number of Samples 

Benign 54,3% 1358995 

Malicious 45,7% 1145272 

Total 2504267 

Firstly, we collected the dataset from Kitsune Network 
Attack Dataset, and process the ARP MitM Ettercap 

Dataset; On data preprocessing, it contains NA values 

drop, INF values drop, determine x and y values, Train-

Test Split, Feature Scaling (Standard Scaler, Min-Max 

Scaler, and Maximum Absolute Scaling 

(MaxAbsScaler)), One Hot Encoding, and reshape the 

x_train and x_test. The Model is divided into 2 (two) 

hybrid deep learning methods, which are CNN-MLP 

and CNN-LSTM, then we will train the models to know 

the accuracy and loss rates. The last step is to test the 

model by evaluate the model and compare with model 
training results, and then we were setting up the 

prediction to know the rates of accuracy, recall, 

precision, and F1-Score. The workflow of this research 

is shown in Figure 1. 

2.2 Data Preprocessing 

After the dataset and label files have been merged, the 

next step is data processing. In this step, we are 

managing the dataset that will be used before the dataset 

is being implemented in the models. There are 7 (seven) 

steps of data preprocessing for this study, such as drop 

NA values, drop INF values, determine x and y values, 
train-test split, feature scaling, one hot encoding, and 

reshape the x_train and x_test shapes.  

We removed NA (Not Available) or null and INF 

(Infinite) values first, then determining the x and y 

values, which are the x values will be implemented to 

115 columns (main data), whereas the y values will be 

implemented to 1 column (label data). 

On Train-Test Split [15], we are splitting the data train 

and test from the merged dataset, in which the 

percentage of training data is 60% and testing data is 

40% [16], and the data would be randomly shuffled.   
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Figure 1. Research Flow Model 

Feature Scaling [17] is the next method used for 

merging the self-variables or feature ranges in data [18], 

and it is involving value rescaling to make the data 

processing easier [19]. The StandardScaler, 

MinMaxScaler, and MaxAbsScaler [19] are used as the 

form of feature scaling for x_train and x_test values. 

StandardScaler is a feature scaling method that adjusts 

the information inside of each component and will scale 

them in such a way that makes the current dissemination 

is revolved around 0, with a standard deviation of 1 

[19]. MinMaxScaler is a feature scaling method that 
widely recognized approach to standardizing the data, 

where the base estimation for each component changes 

to 0 and the most extreme estimation changes to 1, and 

each other is changed in the range of 0 and 1 [19]. 

MaxAbsScaler is a feature scaling method that contrast 

difference from other feature scaling that the outright 

quality is mapped in the range of 0 and 1 [19]. By using 

feature scaling, the accuracy rate could be increased. 

Based on the research from [19], before implementing 

any of the feature scaling methods, the accuracy rate is 

in the range of 67%-69%, but when the feature scaling 
methods has been applied, respectively, the accuracy 

rates are increased to the range of 70%-75% 

(StandardScaler); 72%-78% (MinMaxScaler); and 

71%-77% (MaxAbsScaler). It also exist on f1-score, 

recall, and precision the before implement any of 

feature scaling method, respectively, the f1-score, 

recall, and precision rates are in range of 0.3398-0.6449, 

0.5-0.6417, and 0.4046-0.6431, and after the feature 

scaling methods has been applied, respectively, the f1-

score, recall, and precision rates are increased to the 

range of 0.6539-0.7193, 0.648-0.6827, 0.6505-0.6934 

(StandardScaler); 0.6833-0.7843, 0.58-0.6943, 0.5689-
0.7122 (MinMaxScaler); 0.6945-0.7785, 0.5679-

0.6807, 0.5397-0.6972 (MaxAbsScaler). 

One Hot Encoding is transforming a single variable 

with n observations and d distinct values, to d binary 

variables with each of n observations [20]. On One Hot 

Encoding, it is applied to y_train and y_test values, 

which is y_train and y_test values are contains label 

column, so it could recognize the label whether the 

condition is 0 or 1.  

The last step in data preprocessing is reshaped the 

x_train shape from (x_train.shape[0], 115) into 

(x_train.shape[0], 115, 1), and reshaped the x_test 
shape from (x_test.shape[0], 115) into (x_test.shape[0], 

115, 1). The total of x_train.shape[0] is 1502560, 

whereas the total of x_test.shape[0] is 1001707. The 

shape of x_train and x_test needs to be changed, so it 

could be process when build the models. 

2.3. CNN-MLP and CNN-LSTM 

CNN-MLP and CNN-LSTM are the models that will be 

implemented in this study. Convolutional Neural 

Networks (CNN) is a deep learning model for 

processing the data that has grid patterns, and it is 

designed to learn spacial feature hierarchy 
automatically and adaptive, from low-level patterns to 

high-level patterns. CNN typically has 3 (three) layers 

that consist of convolution, pooling, and a fully 

connected layer [21]. Multilayer Perceptron (MLP) is a 

deep learning model that is categorized as a feed-

forward neural network with 1 (one) or more hidden 

layer(s). The layer of MLP consists of an input layer, 

hidden layer(s), and an output layer. The 

backpropagation training algorithm is also used for 

training MLP [22]. MLP has the ability in developing 

non-linear models with high complexity, and the layer 

consist of input, hidden, and output [23]. Long Short-
Term Memory (LSTM) is the form of deep Recurrent 

Neural Network that learns order dependence within 

sequential data and usually used for time-series data 

classification [24].  

Either using CNN-MLP or CNN-LSTM has the same 

input shape: (None, 115, 1). The first model that will be 

build is CNN-MLP. On CNN-MLP, in the CNN part, 

we are using 2 (two) 1D CNN layers [25], 2 (two) Max 

Pooling layers [26], 1 (one) Dropout layer [27], and 1 

(one) Dense layer by using ReLU as the activation [28], 

whereas in MLP part, we are using 2 (two) hidden 
layers, 1 (one) Dropout layer [27], and 1 (one) Dense 

layer by using ReLU as the activation [28], then we are 

going to Fully Connected layer process, which is going 

to Flatten layer [29] first, then using Sigmoid as 

Activation in Dense layer [30]. The Output layer is the 

last layer of CNN-MLP that will be through the training 

phase using some parameters that are needed and will 

determine the performance results in the testing phase. 

The model flow of CNN-MLP is shown in Figure 2. 
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Figure 2. CNN-MLP Model Flow 

The CNN-LSTM is the second model that will be build. 

On CNN-LSTM, in the CNN part, same as in CNN-

MLP, we are using 2 (two) 1D CNN layers [25], 2 (two) 

Max Pooling layers [26], 1 (one) Dropout layer [27], 

and 1 (one) Dense layer by using ReLU as the activation 

[28], whereas in LSTM part, we are using 2 (two) 
LSTM layers, 1 (one) Dropout layer [27], and 1 (one) 

Dense layer by using ReLU as the activation [28], then 

we are going to Fully Connected layer process, which 

is also going to Flatten layer [29] first, then using 

Sigmoid as Activation in Dense [30]. The Output layer 

is the last layer of CNN-LSTM that will be through the 

training phase using some parameters that are needed 

and will determine the performance results in the testing 

phase. The model flow of CNN-LSTM is shown in 

Figure 3. 

 

Figure 3. CNN-LSTM Model Flow 

By implementing these models (CNN-MLP and CNN-

LSTM) for detecting MitM attacks, we will know which 

model has generating the better performance metrics 

with different proposed Feature Scaling methods. After 

building the models, the next steps in data processing 

are training the models by using the parameter and its 

values, and then we are going to test the models to 

perform the results. 

3.  Results and Discussions 

This section will be discussed about the experimental 

setup, model training and testing process, the 

performance metrics that will be used, and the results of 

this study. 

3.1. Experimental Setup 

To implementing the CNN-MLP and CNN-LSTM 

models using the ARP MitM Ettercap dataset, we are 

using Python (ver. 3.10.2) – Jupyter Notebook [31] in 

Visual Studio Code, with TensorFlow and Keras [32] to 
create CNN-MLP and CNN-LSTM models. This 

software runs in a PC with the specifications such as 

Windows 10 Pro 64-bit, 11th Gen Intel® Core (TM) i5-

11400 @ 2.60GHz (12 CPUs) ~2.6 GHz, 16 GB RAM. 

We have implemented 3 (three) scenarios in our 

experiments, which is using different Feature Scaling 

that consist of Standard Scaler (StandardScaler), Min-

Max Scaler (MinMaxScaler), and Maximum Absolute 

Scaling (MaxAbsScaler) with CNN-MLP and CNN-

LSTM models. 

3.2. Model Training 

The next step after data preprocessing is building the 

CNN-MLP and CNN-LSTM models, using (None, 115, 

1) as the inputs. After each model has been created, the 

next step is the model training phase, using the 

parameters to support this model process, consisting of 

Epoch, Batch Size, Optimizer, Loss, Learning Rate, 

Validation Split, and Metric. as shown in Table 3. We 

also use Validation Split (0.2), for displaying the 

validation accuracy and loss in each epoch iteration in 

the training phase. 

Table 3. Parameter Values of Model Training 

Parameter Value 

Epoch 5 

Batch Size 512 

Optimizer Adam 

Loss Binary Cross-Entropy 

Learning Rate 

Validation Split 

1e-4 

0.2 

Metric Accuracy and Loss 

While doing training phase on the ARP MitM dataset 

using these parameters, the training time of CNN-MLP 

is way faster than CNN-LSTM, using various Feature 

Scaling methods. CNN-MLP needs around 50 minutes, 

while CNN-LSTM needs around 200 minutes overall. 

For each epoch iteration, using CNN-MLP needs 

around 500 seconds, while CNN-LSTM needs around 

3000 seconds. 

The Model accuracy during the training session using 

CNN-MLP and CNN-LSTM along with various 

Feature Scaling methods will be combined into a plot 

graph that has been generated and it consists of training 

(blue line) and validation (orange line), that shows the 
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accuracy value on each epoch iteration in Figure 4 until 

Figure 9. 

 

Figure 4. Model Accuracy of CNN-MLP using StandardScaler 

In Figure 4, with 5 (five) epoch iterations on the CNN-

MLP model using the StandardScaler method, the 

accuracy rates of training keep increasing from 1st until 

5th epoch iterations, while the accuracy of validation 

had increased from 1st until 4th epoch but had decreased 

from 4th until 5th epoch iterations. The accuracy rates of 

training are still stable. However, the accuracy rates of 

validation are unstable, but still good enough. The 

average of accuracy rates between training and 

validation are still above 0.99. This model accuracy 

graph is most stable among other accuracy graphs. 

 

Figure 5. Model Accuracy of CNN-MLP using MinMaxScaler 

In Figure 5, with 5 (five) epoch iterations on the CNN-

MLP model using MinMaxScaler, the accuracy of 

training keeps increasing from 1st until 5th epoch 

iterations, while the accuracy of validation had 

increased from 1st until 2nd epoch iterations, but had 
decreased from 2nd until 3rd epoch iterations, and from 

3rd until 5th epoch iterations, it has increased. The 

accuracy rates of training are still stable. However, the 

accuracy rates of validation are unstable. The average 

of accuracy rates is still above 0.99. 

 

Figure 6. Model Accuracy of CNN-MLP using MaxAbsScaler 

In Figure 6, with 5 (five) epoch iterations on the CNN-

MLP model using MaxAbsScaler, the accuracy of 

training had increased from 1st until 4th epoch iterations 

but had decreased from 4th until 5th epoch iterations, 

while the accuracy of validation had increased from 1st 

until 4th epoch iterations but had decreased from 4th until 

5th epoch iterations. Overall, the rates between training 

and validation graph are quite stable, although it has 

been decreased at once on training and validation, and 

the accuracy rates are still above 0.99. 

 

Figure 7. Model Accuracy of CNN-LSTM using StandardScaler 

In Figure 7, with 5 (five) epoch iterations on the CNN-

LSTM model using StandardScaler, the accuracy of 

training keeps increasing from 1st until 5th epoch 

iterations, while the accuracy of validation had 
increased from 1st until 2nd epoch iterations, decreased 

from 2nd until 3rd epoch iterations, increased from 3rd 

until 4th epoch iterations, and then had decreased from 

4th until 5th epoch iterations. The accuracy rates of 

training are still stable. However, the accuracy rates of 

validation are unstable. The average of accuracy rates is 

still above 0.99 after the 2nd epoch, in training and 

validation. 

 

Figure 8. Model Accuracy of CNN-LSTM using MinMaxScaler 

In Figure 8, with 5 (five) epoch iterations on the CNN-

LSTM model using MinMaxScaler, the accuracy of 

training keeps increasing from 1st until 5th epoch 

iterations, while the accuracy of validation had 

increased from 1st until 4th epoch iteration but had 

decreased from 4th until 5th. The accuracy rates of 

training are still stable. However, the accuracy rates of 
validation are unstable, especially if we compared to the 

prior graphs because the validation rates have 

significantly differenced on each epoch iterations. The 

average of accuracy rates is still above 0.98. 
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Figure 9. Model Accuracy of CNN-LSTM using MaxAbsScaler 

In Figure 9, with 5 (five) epoch iterations on the CNN-

LSTM model using MaxAbsScaler, the accuracy of 

training keeps increasing from 1st until 5th epoch 

iterations, while the accuracy of validation had 
increased from 1st until 4th epoch iterations but had 

decreased from 4th until 5th. The accuracy rates of 

training are still stable. However, the accuracy rates of 

validation are unstable, especially if we compared to the 

prior graphs because the validation rates have 

significantly differenced on each epoch iterations. 

Besides the accuracy rates, we also knew the loss rates 

of each scenario. The Model Loss during the training 

phase with CNN-MLP and CNN-LSTM models along 

with various Feature Scaling methods will be combined 

into plot graphs that has been generated, and it consists 

of training (blue line) and validation (orange line) 
results. Model loss is one of the important 

measurements in model training, because the model 

loss could be determined if the model is overfitting, 

underfitting, or good fit. Therefore, the plot graph 

shows the loss value on each epoch iterations in Figure 

10 until Figure 15. 

 

Figure 10. Model Loss of CNN-MLP using StandardScaler 

In Figure 10, with 5 (five) epoch iterations on the CNN-

MLP model using StandardScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 

while the loss of validation had decreased and increased 

on every epoch iteration, from 1st until 5th epoch 

iterations. The loss rates of training are still stable. 

However, the loss rates of validation are unstable. The 

average of loss rates is still below 0.02. 

 

Figure 11. Model Loss of CNN-MLP using MinMaxScaler 

In Figure 11, with 5 (five) epoch iterations on the CNN-

MLP model using MinMaxScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 

while the loss of validation had decreased from 1st until 
2nd epoch iterations, then increased from 2nd until 3rd 

epoch iterations, and from 3rd until 5th, it keeps 

decreasing. The loss rates of training are still stable. 

However, the loss rates of validation are unstable. The 

average of loss rates is still below 0.05. 

 

Figure 12. Model Loss of CNN-MLP using MaxAbsScaler 

In Figure 12, with 5 (five) epoch iterations on the CNN-
MLP model using MaxAbsScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 

while the loss of validation also keeps decreasing as 

well. Overall, the rates between training and validation 

graph are still stable, and the loss rates are still below 

0.025. This graph is the most stable among other loss 

graphs because training and validation rates are keep 

decreasing as well on each epoch iterations. 

 

Figure 13. Model Loss of CNN-LSTM using StandardScaler 

In Figure 13, with 5 (five) epoch iterations on the CNN-

LSTM model using StandardScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 
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while the loss of validation had decreased and increased 

on every epoch iteration. The loss rates of training are 

still stable. However, the loss rates of validation are 

unstable, and it has significantly differenced on the rates 

in each epoch iterations. 

 

Figure 14. Model Loss of CNN-LSTM using MinMaxScaler 

In Figure 14, with 5 (five) epoch iterations on the CNN-

LSTM model using MinMaxScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 

while the loss of validation had decreased from 1st until 

4th epoch iterations and increased from 4th until 5th 

epoch iterations. The loss rates of training are still 

stable. However, the loss rates of validation are 

unstable, and it has significantly differenced on the rates 

in each epoch iterations. 

 

Figure 15. Model Loss of CNN-LSTM using MaxAbsScaler 

In Figure 15, with 5 (five) epoch iterations on the CNN-

LSTM model using MaxAbsScaler, the loss of training 

keeps decreasing from 1st until 5th epoch iterations, 

while the loss of validation had decreased from 1st until 

4th epoch iterations and increase from 4th until 5th epoch 

iterations. The loss rates of training are still stable. 

However, the loss rates of validation are unstable, and 
it has significantly differenced on the rates in each 

epoch iterations. 

From overall graphs (model accuracy and loss) that 

have been generated, most of the model that has been 

built is indicated as the overfitting models, although it 

has some slight difference between training and 

validation. It occurred because the model could be 

complicated when training its data, that could make the 

performance results of validation or test become poor 

[33]. 

3.3. Performance Metrics 

The performance metrics used in this study are 

accuracy, precision, recall, and f1-Score, based on the 

research from [7], [8], [9], [10], [11], and [12]. 

Accuracy is the percentage of samples that are correctly 

classified above the total number of samples. Recall or 

sensitivity is to reflects the ability of systems to detect 

anomalies. Precision is the predictably positive 

predictor ratio to total positive observation predictions. 

Whereas F1-Score is the weighted average precision 

and recall [34]. 

3.4. Results 

After model testing was conducted, the Accuracy, 

Precision, Recall, and F1-Score results were obtained 

from CNN-MLP and CNN-LSTM to ARP MitM attack 

detection, based on Standard Scaler, Min-Max Scaler, 

and Abs Max Scaler, shown in Table 4, Table 5, and 

Table 6. We separated the Precision, Recall, and F1-

Score based on the label that contains 1 (MitM Attack) 

and 0 (Benign). 

Table 4. Performance Results from CNN-MLP and CNN-LSTM 

using Standard Scaler 

Model Label Accuracy Precision Recall F1-

Score 

CNN-

MLP 

0 
99.74% 

1.00 1.00 1.00 

1 1.00 1.00 1.00 

CNN-

LSTM 

0 

1 99.44% 
1.00 

0.99 

0.99 

0.99 

0.99 

0.99 

Based on the testing results by using Standard Scaler on 

CNN-MLP and CNN-LSTM models, both models got 

well rates of accuracy, precision, recall, and f1-Score, 

which is generated above 99%. CNN-MLP generated a 

higher accuracy rate than CNN-LSTM with a 

percentage of 99.74%. 

Table 5. Performance Results from CNN-MLP and CNN-LSTM 

using Min-Max Scaler 

Model Label Accuracy Precision Recall F1-

Score 

CNN-

MLP 

0 
99.67% 

0.99 1.00 1.00 

1 1.00 0.99 1.00 

CNN-

LSTM 

0 
99.40% 

0.99 1.00 0.99 

1 1.00 0.99 0.99 

Based on the testing results by using Min-Max Scaler 

on CNN-MLP and CNN-LSTM models, both models 
got well rates of accuracy, Precision, Recall, and F1-

Score which is generated above 99%. CNN-MLP 

generated a higher accuracy rate than CNN-LSTM with 

a percentage of 99.67%. 

Table 6. Performance Results from CNN-MLP and CNN-LSTM 

using Abs Max Scaler 

Model Label Accuracy Precision Recall F1-

Score 

CNN-

MLP 

0 
99.57% 

0.99 1.00 1.00 

1 1.00 0.99 1.00 

CNN-

LSTM 

0 
98.68% 

1.00 0.98 0.99 

1 0.97 1.00 0.99 
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Based on the testing results by using Min-Max Scaler 

on CNN-MLP and CNN-LSTM models, both models 

got the good rates of accuracy, precision, recall, and f1-

Score which is generated above 99%. CNN-MLP 

generated a higher accuracy rate than CNN-LSTM with 

a percentage of 99.57%.  

For overall scenarios that have been conducted in this 

study, using CNN-MLP with StandardScaler got the 

highest accuracy rate among other methods, which is 

got a percentage of 99.74%.  

4.  Conclusion 

This study aims to implement the hybrid deep learning 

methods (CNN-MLP and CNN-LSTM) to detect ARP 

MitM using Kitsune Network Attack Dataset and has 3 

(three) scenarios based on the used feature selection 

(StandardScaler, MinMaxScaler, and MaxAbsScaler). 

The results prove that CNN-MLP can generate better a 

accuracy rate than CNN-LSTM (99.74%, 99.67%, and 

99.57%, respectively). For overall scenarios, using 

CNN-MLP with Standard Scaler could achieve the 

highest accuracy rate among other scenarios (99.74%). 
We also generate the accuracy and loss of each scenario 

using the graphs, which state that mostly, the training 

has stable values on each epoch iteration and the 

validation has unstable values on each epoch iteration. 

Most of the graphs are indicated as the overfitting 

models, although it has some slight difference between 

training and validation, especially in CNN-MLP model. 

For future works, it could implement other hybrid deep 

learning or machine learning methods on ARP MitM 

attack detection. We could also implement feature 

selection or extraction methods for the dataset to stable 

the validation results in the training phase and reduce 
the overfitting or underfitting model, as well as combine 

the ARP MitM Ettercap dataset with other MitM attacks 

in the Kitsune dataset (Video Injection and Active 

Wiretap) or combine the entire dataset (Kitsune NIDS) 

to be processed. 
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